Prediction of Mechanical Properties of Reactive Powder Concrete by Using Artificial Neural Network and Regression Technique after the Exposure to Fire Flame

نویسنده

  • Mohammed Kadhum
چکیده

An experimental work was carried out to investigate some mechanical properties of Reactive Powder Concrete (RPC) which are particularly required as input data for structural design. These properties include compressive strength, flexural strength, tensile strength and static modulus of elasticity. A combined laboratory and modeling study was undertaken to develop a database of the estimation ability of the effects of exposure to real fire flame on the mechanical properties of reactive powder concrete using 2 different models: artificial neural network (ANN) and regression techniques. Experimental results were used in the estimation models. After being subjected to high temperatures from 200 to 500°C, the residual mechanical properties were determined, and RPC was considerably spalled under high temperature. Exposing to high temperatures from 200 to 400°C, mechanical properties were enhanced more or less, which can be attributed to further hydration of cementitious materials activated by elevated temperature. It was found that RPC can be used at elevated temperatures up to 300°C for heating times up to 1 hour, taking into consideration the loss of strength. Finally, prediction performances of reactive powder concrete single and multiple variable regression equations were developed, and ANN was compared. According to this comparison, best prediction performance which belongs to ANN was improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of mechanical and fresh properties of self-consolidating concrete (SCC) using multi-objective genetic algorithm (MOGA)

Compressive strength and concrete slump are the most important required parameters for design, depending on many factors such as concrete mix design, concrete material, experimental cases, tester skills, experimental errors etc. Since many of these factors are unknown, and no specific and relatively accurate formulation can be found for strength and slump, therefore, the concrete properties ca...

متن کامل

Prediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network

Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...

متن کامل

Prediction of Mechanical Properties of TWIP Steels using Artificial Neural Network Modeling

In recent years, great attention has been paid to the development of high manganese austenitic TWIP steels exhibiting high tensile strength and exceptional total elongation. Due to low stacking fault energy (SFE), cross slip becomes more difficult in these steels and mechanical twinning is then the favored deformation mode besides dislocation gliding. Chemical composition along with processing ...

متن کامل

Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...

متن کامل

Artificial Neural Network Based Prediction Hardness of Al2024-Multiwall Carbon Nanotube Composite Prepared by Mechanical Alloying

In this study, artificial neural network was used to predict the microhardness of Al2024-multiwall carbon nanotube(MWCNT) composite prepared by mechanical alloying. Accordingly, the operational condition, i.e., the amount of reinforcement, ball to powder weight ratio, compaction pressure, milling time, time and temperature of sintering as well as vial speed were selected as independent input an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015